[feat] 3.5
This commit is contained in:
373
3-5.py
Normal file
373
3-5.py
Normal file
@@ -0,0 +1,373 @@
|
||||
import sys
|
||||
import os
|
||||
import random
|
||||
import cv2
|
||||
from PySide6.QtCore import QTimer, Qt, QThread, Signal
|
||||
from PySide6.QtGui import QImage, QPixmap
|
||||
from PySide6.QtWidgets import QApplication, QWidget, QLabel, QPushButton, QSlider, QVBoxLayout, QProgressBar
|
||||
|
||||
|
||||
# ======================================================
|
||||
# 加载动画界面
|
||||
# ======================================================
|
||||
class LoadingScreen(QWidget):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.setWindowTitle("Face Random Selector")
|
||||
self.setFixedSize(300, 150)
|
||||
self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint)
|
||||
self.setStyleSheet("""
|
||||
background-color: #1E90FF;
|
||||
border-radius: 10px;
|
||||
""")
|
||||
|
||||
# 创建布局
|
||||
layout = QVBoxLayout()
|
||||
layout.setAlignment(Qt.AlignCenter)
|
||||
layout.setSpacing(15)
|
||||
|
||||
# 加载提示文字
|
||||
self.loading_label = QLabel("正在加载模型...")
|
||||
self.loading_label.setAlignment(Qt.AlignCenter)
|
||||
self.loading_label.setStyleSheet("""
|
||||
color: white;
|
||||
font-size: 18px;
|
||||
font-weight: bold;
|
||||
""")
|
||||
layout.addWidget(self.loading_label)
|
||||
|
||||
# 进度条 - 设置为不确定模式,显示加载动画
|
||||
self.progress_bar = QProgressBar()
|
||||
self.progress_bar.setRange(0, 0) # 设置为0,0表示不确定模式
|
||||
self.progress_bar.setFixedHeight(10)
|
||||
self.progress_bar.setStyleSheet("""
|
||||
QProgressBar {
|
||||
border: 1px solid rgba(255, 255, 255, 100);
|
||||
border-radius: 5px;
|
||||
background-color: rgba(255, 255, 255, 50);
|
||||
}
|
||||
QProgressBar::chunk {
|
||||
background-color: white;
|
||||
border-radius: 4px;
|
||||
}
|
||||
""")
|
||||
layout.addWidget(self.progress_bar)
|
||||
|
||||
self.setLayout(layout)
|
||||
|
||||
|
||||
# ======================================================
|
||||
# 模型加载线程
|
||||
# ======================================================
|
||||
class ModelLoader(QThread):
|
||||
loaded = Signal(object, str) # 模型加载完成信号
|
||||
progress = Signal(str) # 进度更新信号
|
||||
|
||||
def __init__(self, model_path):
|
||||
super().__init__()
|
||||
self.model_path = model_path
|
||||
|
||||
def run(self):
|
||||
try:
|
||||
# 模拟进度更新
|
||||
self.progress.emit("正在初始化模型...")
|
||||
|
||||
# 延迟加载检测器
|
||||
detector = cv2.FaceDetectorYN.create(
|
||||
self.model_path,
|
||||
"",
|
||||
(640, 480),
|
||||
score_threshold=0.6,
|
||||
nms_threshold=0.3,
|
||||
top_k=5000
|
||||
)
|
||||
|
||||
self.progress.emit("模型加载完成")
|
||||
self.loaded.emit(detector, "")
|
||||
except Exception as e:
|
||||
self.loaded.emit(None, str(e))
|
||||
|
||||
|
||||
# ======================================================
|
||||
# 主窗口
|
||||
# ======================================================
|
||||
class FaceRandomApp(QWidget):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
# 先显示加载页面
|
||||
self.loading_screen = LoadingScreen()
|
||||
self.loading_screen.show()
|
||||
|
||||
# 强制立即处理GUI事件,确保加载页面能立即显示
|
||||
QApplication.processEvents()
|
||||
|
||||
# 延迟初始化主界面
|
||||
QTimer.singleShot(100, self.initialize_app)
|
||||
|
||||
def initialize_app(self):
|
||||
"""初始化应用程序"""
|
||||
# 状态
|
||||
self.state = "normal"
|
||||
self.selected_face_index = -1
|
||||
self.static_frame = None
|
||||
self.faces_snapshot = []
|
||||
self.faces = []
|
||||
self.detection_confidence = 0.6
|
||||
|
||||
# 初始化摄像头 - 使用原代码的高分辨率设置
|
||||
self.cap = cv2.VideoCapture(0)
|
||||
if self.cap.isOpened():
|
||||
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
|
||||
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
|
||||
# 提高图像质量设置
|
||||
self.cap.set(cv2.CAP_PROP_FPS, 30)
|
||||
|
||||
# UI
|
||||
self.setup_ui()
|
||||
|
||||
# 启动模型加载
|
||||
self.start_model_loading()
|
||||
|
||||
def start_model_loading(self):
|
||||
"""启动模型加载"""
|
||||
model_path = self.get_yunet_model_path()
|
||||
if model_path:
|
||||
self.loader = ModelLoader(model_path)
|
||||
self.loader.loaded.connect(self.on_model_loaded)
|
||||
self.loader.progress.connect(self.on_loading_progress)
|
||||
self.loader.start()
|
||||
else:
|
||||
# 如果没有模型,跳过模型加载
|
||||
self.loading_screen.close()
|
||||
self.show()
|
||||
self.timer = QTimer()
|
||||
self.timer.timeout.connect(self.update_frame)
|
||||
self.timer.start(30)
|
||||
|
||||
def get_yunet_model_path(self):
|
||||
"""获取模型路径"""
|
||||
base_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
model_path = os.path.join(base_dir, "model", "face_detection_yunet_2023mar.onnx")
|
||||
return model_path if os.path.exists(model_path) else None
|
||||
|
||||
def on_loading_progress(self, message):
|
||||
"""加载进度更新"""
|
||||
self.loading_screen.loading_label.setText(message)
|
||||
|
||||
def on_model_loaded(self, detector, error):
|
||||
"""模型加载完成回调"""
|
||||
if detector and not error:
|
||||
self.detector = detector
|
||||
# 更新置信度
|
||||
self.detector.setScoreThreshold(self.detection_confidence)
|
||||
else:
|
||||
print(f"模型加载失败: {error}")
|
||||
|
||||
# 关闭加载界面并显示主窗口
|
||||
self.loading_screen.close()
|
||||
self.show()
|
||||
|
||||
# 启动视频更新定时器
|
||||
self.timer = QTimer()
|
||||
self.timer.timeout.connect(self.update_frame)
|
||||
self.timer.start(30)
|
||||
|
||||
# ======================================================
|
||||
# UI
|
||||
# ======================================================
|
||||
def setup_ui(self):
|
||||
self.setWindowTitle("Face Random Selector")
|
||||
self.resize(1280, 720)
|
||||
|
||||
self.video_label = QLabel(self)
|
||||
self.video_label.setGeometry(0, 0, self.width(), self.height())
|
||||
self.video_label.setStyleSheet("background: black;")
|
||||
|
||||
# 随机按钮
|
||||
self.btn = QPushButton("随机", self)
|
||||
self.btn.setFixedSize(140, 55)
|
||||
self.btn.move(20, self.height() - 75)
|
||||
self.btn.clicked.connect(self.on_random_clicked)
|
||||
self.btn.setStyleSheet("""
|
||||
QPushButton {
|
||||
background-color: rgba(0, 0, 0, 180);
|
||||
color: white;
|
||||
font-size: 20px;
|
||||
font-weight: bold;
|
||||
border: none;
|
||||
border-radius: 8px;
|
||||
}
|
||||
QPushButton:hover {
|
||||
background-color: rgba(30, 30, 30, 200);
|
||||
}
|
||||
QPushButton:pressed {
|
||||
background-color: rgba(50, 50, 50, 220);
|
||||
}
|
||||
""")
|
||||
|
||||
# 置信度滑条
|
||||
self.slider = QSlider(Qt.Horizontal, self)
|
||||
self.slider.setRange(30, 90)
|
||||
self.slider.setValue(int(self.detection_confidence * 100))
|
||||
self.slider.setFixedWidth(200)
|
||||
self.slider.move(120, 20)
|
||||
self.slider.valueChanged.connect(self.on_confidence_change)
|
||||
self.slider.setStyleSheet("""
|
||||
QSlider::groove:horizontal {
|
||||
background: rgba(0, 0, 0, 120);
|
||||
height: 4px;
|
||||
border-radius: 2px;
|
||||
}
|
||||
QSlider::handle:horizontal {
|
||||
background: white;
|
||||
width: 14px;
|
||||
height: 14px;
|
||||
border-radius: 7px;
|
||||
margin: -5px 0;
|
||||
}
|
||||
""")
|
||||
|
||||
# 置信度标签
|
||||
self.conf_label = QLabel("置信度", self)
|
||||
self.conf_label.move(20, 20)
|
||||
self.conf_label.setStyleSheet("""
|
||||
color: white;
|
||||
font-size: 16px;
|
||||
font-weight: bold;
|
||||
background: transparent;
|
||||
""")
|
||||
|
||||
def resizeEvent(self, event):
|
||||
self.video_label.setGeometry(0, 0, self.width(), self.height())
|
||||
self.btn.move(20, self.height() - 75)
|
||||
super().resizeEvent(event)
|
||||
|
||||
def on_confidence_change(self, value):
|
||||
self.detection_confidence = value / 100.0
|
||||
if hasattr(self, 'detector'):
|
||||
self.detector.setScoreThreshold(self.detection_confidence)
|
||||
|
||||
def on_random_clicked(self):
|
||||
if self.state == "normal":
|
||||
self.state = "random"
|
||||
self.btn.setText("重置")
|
||||
|
||||
if len(self.faces) > 0:
|
||||
self.selected_face_index = random.randint(0, len(self.faces) - 1)
|
||||
|
||||
# 捕获静态帧
|
||||
if self.cap and self.cap.isOpened():
|
||||
ret, img = self.cap.read()
|
||||
if ret:
|
||||
img = cv2.flip(img, 1)
|
||||
img = self.resize_cover(img, self.video_label.width(), self.video_label.height())
|
||||
self.static_frame = img.copy()
|
||||
self.faces_snapshot = self.faces.copy()
|
||||
else:
|
||||
self.state = "normal"
|
||||
self.btn.setText("随机")
|
||||
self.selected_face_index = -1
|
||||
self.static_frame = None
|
||||
|
||||
def resize_cover(self, img, target_w, target_h):
|
||||
h, w = img.shape[:2]
|
||||
scale = max(target_w / w, target_h / h)
|
||||
new_w = int(w * scale)
|
||||
new_h = int(h * scale)
|
||||
resized = cv2.resize(img, (new_w, new_h))
|
||||
x_start = (new_w - target_w) // 2
|
||||
y_start = (new_h - target_h) // 2
|
||||
return resized[y_start:y_start + target_h, x_start:x_start + target_w]
|
||||
|
||||
def draw_face_with_confidence(self, img, face, color, thickness=2):
|
||||
"""绘制人脸框和置信度"""
|
||||
x, y, w, h = map(int, face[:4])
|
||||
score = face[4]
|
||||
|
||||
# 绘制人脸框
|
||||
cv2.rectangle(img, (x, y), (x + w, y + h), color, thickness)
|
||||
|
||||
# 绘制置信度文本
|
||||
confidence_text = f"{score:.2f}"
|
||||
text_y = max(y - 10, 20)
|
||||
|
||||
# 创建半透明背景
|
||||
overlay = img.copy()
|
||||
text_size = cv2.getTextSize(confidence_text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 2)[0]
|
||||
cv2.rectangle(overlay, (x, text_y - text_size[1] - 5),
|
||||
(x + text_size[0] + 10, text_y + 5), color, -1)
|
||||
|
||||
# 应用透明度
|
||||
alpha = 0.7
|
||||
cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
|
||||
|
||||
# 绘制文本
|
||||
cv2.putText(img, confidence_text, (x + 5, text_y),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
||||
|
||||
def update_frame(self):
|
||||
if not self.cap or not self.cap.isOpened():
|
||||
return
|
||||
|
||||
ret, img = self.cap.read()
|
||||
if not ret:
|
||||
return
|
||||
|
||||
# 使用原代码的镜像翻转
|
||||
img = cv2.flip(img, 1)
|
||||
|
||||
# 使用原代码的resize_cover方法,保持视野大小
|
||||
img = self.resize_cover(img, self.video_label.width(), self.video_label.height())
|
||||
|
||||
if self.state == "normal":
|
||||
if hasattr(self, 'detector'):
|
||||
# 设置检测器输入大小
|
||||
self.detector.setInputSize((img.shape[1], img.shape[0]))
|
||||
|
||||
# 检测人脸
|
||||
_, detected = self.detector.detect(img)
|
||||
self.faces = detected if detected is not None else []
|
||||
|
||||
# 绘制检测结果
|
||||
for face in self.faces:
|
||||
self.draw_face_with_confidence(img, face, (0, 255, 0), 2)
|
||||
else:
|
||||
# 如果没有模型,只显示原始图像
|
||||
pass
|
||||
else: # random 模式
|
||||
if self.static_frame is not None:
|
||||
img = self.static_frame.copy()
|
||||
for i, face in enumerate(self.faces_snapshot):
|
||||
color = (0, 0, 255) if i == self.selected_face_index else (0, 255, 0)
|
||||
thickness = 3 if i == self.selected_face_index else 2
|
||||
self.draw_face_with_confidence(img, face, color, thickness)
|
||||
|
||||
self.display(img)
|
||||
|
||||
def display(self, img):
|
||||
# 保持原代码的图像显示方式
|
||||
rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
h, w, c = rgb.shape
|
||||
qimg = QImage(rgb.data, w, h, c * w, QImage.Format_RGB888)
|
||||
self.video_label.setPixmap(QPixmap.fromImage(qimg))
|
||||
|
||||
def closeEvent(self, event):
|
||||
if self.cap and self.cap.isOpened():
|
||||
self.cap.release()
|
||||
if hasattr(self, 'loader') and self.loader.isRunning():
|
||||
self.loader.quit()
|
||||
self.loader.wait()
|
||||
event.accept()
|
||||
|
||||
|
||||
# ======================================================
|
||||
def main():
|
||||
app = QApplication(sys.argv)
|
||||
window = FaceRandomApp()
|
||||
# 注意:这里不再调用 window.show(),因为 FaceRandomApp 内部会处理显示逻辑
|
||||
sys.exit(app.exec())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
BIN
model/face_detection_yunet_2023mar.onnx
Normal file
BIN
model/face_detection_yunet_2023mar.onnx
Normal file
Binary file not shown.
@@ -10,14 +10,15 @@ FaceRandomSelector 是一款人脸随机选择工具。软件采用opencv的人
|
||||
|
||||
2.4版本之后:
|
||||
|
||||
` nuitka --standalone --include-package=cv2 --include-package=numpy --enable-plugin=pyside6 --windows-console-mode=disable --windows-icon-from-ico=./text.ico --include-data-dir=F:\python310\lib\site-packages\cv2\data=cv2\data --include-data-files=model/face_detection_yunet_2023mar.onnx=model/face_detection_yunet_2023mar.onnx --output-dir=dist34 --remove-output 3-4.py`
|
||||
` nuitka --standalone --include-package=cv2 --enable-plugin=pyside6 --windows-console-mode=disable --windows-icon-from-ico=./text.ico --include-data-files=model/face_detection_yunet_2023mar.onnx=model/face_detection_yunet_2023mar.onnx --output-dir=dist34 --remove-output 3-5.py`
|
||||
## 3.版本说明
|
||||
|
||||
1. 1.py 2.py:非稳定版本
|
||||
2. 3-1.py:存在UI不美观 窗口大小 摄像头清晰度等问题
|
||||
3. 3-2.py:解决3-1.py的相关问题
|
||||
4. 3-3.py:添加加载进度条
|
||||
5. 3-test.py:由3-3.py改编 给出具体的[人脸识别模型无法获取]的相关报错
|
||||
5. 3-test.py:由3-3.py改编 给出具体的人脸识别模型无法获取的相关报错
|
||||
6. 3-control.py:由3-3.py改编 用户可以修改相关参数
|
||||
7. 3-4.py:使用YuNet模型 加强对小人脸识别准确度
|
||||
8. 3-5.py:优化加载性能
|
||||
> 软件务必保存在纯英文路径中!
|
||||
Reference in New Issue
Block a user