Files
face-random/2.py
2025-11-22 21:03:45 +08:00

208 lines
7.0 KiB
Python

import cv2
import numpy as np
import random
import os
import sys
from collections import deque
class FaceSelector:
def __init__(self):
# 获取模型文件的正确路径
cascade_path = self.get_cascade_path()
self.face_cascade = cv2.CascadeClassifier(cascade_path)
# 检查模型是否加载成功
if self.face_cascade.empty():
fallback_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
self.face_cascade = cv2.CascadeClassifier(fallback_path)
if self.face_cascade.empty():
sys.exit(1)
# 状态变量
self.random_mode = False
self.selected_face = None
self.static_frame = None
self.static_faces = None
# 用于平滑检测的队列
self.face_queue = deque(maxlen=5)
# 创建窗口
self.window_name = "Face Selector"
cv2.namedWindow(self.window_name, cv2.WINDOW_NORMAL)
# 添加窗口关闭事件处理
self.running = True
def get_cascade_path(self):
"""获取模型文件的正确路径"""
if getattr(sys, 'frozen', False):
base_path = sys._MEIPASS
else:
base_path = os.path.dirname(os.path.abspath(__file__))
possible_paths = [
os.path.join(base_path, 'haarcascade_frontalface_default.xml'),
os.path.join(base_path, 'cv2', 'data', 'haarcascade_frontalface_default.xml'),
os.path.join(base_path, 'Library', 'etc', 'haarcascades', 'haarcascade_frontalface_default.xml'),
cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
]
for path in possible_paths:
if os.path.isfile(path):
return path
return possible_paths[0]
def detect_faces(self, frame):
"""检测人脸并返回位置"""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(
gray,
scaleFactor=1.05,
minNeighbors=6,
minSize=(40, 40),
flags=cv2.CASCADE_SCALE_IMAGE
)
return faces
def draw_faces(self, frame, faces):
"""在帧上绘制人脸框"""
# 在随机模式下,只绘制选中的红框
if self.random_mode and self.selected_face is not None and self.static_faces is not None:
if self.selected_face < len(self.static_faces):
x, y, w, h = self.static_faces[self.selected_face]
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 3) # 选中的为红色
else:
# 在正常模式下,绘制所有人脸框
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) # 绿色
return frame
def draw_button(self, frame):
"""绘制按钮"""
button_text = "Reset" if self.random_mode else "Random"
button_color = (0, 0, 255) if self.random_mode else (0, 255, 0)
# 绘制按钮背景
cv2.rectangle(frame, (10, 10), (150, 50), button_color, -1)
cv2.rectangle(frame, (10, 10), (150, 50), (255, 255, 255), 2)
# 绘制按钮文字
cv2.putText(frame, button_text, (20, 35), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
return frame
def toggle_random_mode(self, frame, faces):
"""切换随机模式"""
if not self.random_mode:
# 进入随机模式
self.random_mode = True
if len(faces) > 0:
self.selected_face = random.randint(0, len(faces)-1)
self.static_frame = frame.copy()
self.static_faces = faces.copy() # 保存静态状态下的人脸位置
else:
self.selected_face = None
self.static_frame = None
self.static_faces = None
else:
# 退出随机模式
self.random_mode = False
self.selected_face = None
self.static_frame = None
self.static_faces = None
def process_frame(self, frame):
"""处理每一帧"""
# 检测人脸
faces = self.detect_faces(frame)
# 更新人脸队列
if len(faces) > 0:
self.face_queue.append(faces)
# 使用队列中最新的人脸数据
current_faces = faces
if self.face_queue:
current_faces = self.face_queue[-1]
# 处理随机模式
if self.random_mode:
if self.static_frame is not None:
# 使用静态帧,只绘制选中的红框
display_frame = self.static_frame.copy()
display_frame = self.draw_faces(display_frame, current_faces)
else:
display_frame = frame.copy()
else:
# 在实时帧上绘制所有人脸
display_frame = self.draw_faces(frame.copy(), current_faces)
# 绘制按钮
display_frame = self.draw_button(display_frame)
return display_frame
def run(self):
"""运行主程序"""
cap = cv2.VideoCapture(0)
if not cap.isOpened():
return
# 获取摄像头分辨率并设置窗口大小
ret, frame = cap.read()
if ret:
height, width = frame.shape[:2]
cv2.resizeWindow(self.window_name, width, height)
while self.running:
ret, frame = cap.read()
if not ret:
cv2.waitKey(1000)
continue
# 处理帧
display_frame = self.process_frame(frame)
# 显示结果
cv2.imshow(self.window_name, display_frame)
# 处理鼠标点击
def mouse_callback(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
# 检查是否点击了按钮区域
if 10 <= x <= 150 and 10 <= y <= 50:
faces = self.detect_faces(frame)
self.toggle_random_mode(frame, faces)
cv2.setMouseCallback(self.window_name, mouse_callback)
# 处理键盘输入和窗口关闭事件
key = cv2.waitKey(1) & 0xFF
if key == ord('q') or key == 27: # 'q' 或 ESC 键退出
self.running = False
break
# 检查窗口是否被关闭
try:
if cv2.getWindowProperty(self.window_name, cv2.WND_PROP_VISIBLE) <= 0:
self.running = False
break
except:
self.running = False
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
sys.exit(0)
if __name__ == "__main__":
app = FaceSelector()
app.run()